ESB data contributes to science - 2020 papers

GBIF logoThe Earthworm Society of Britain (ESB) is proud to report two new scientific papers that have referenced our datasets in 2020. Links to both of the scientific papers are included in the titles for those that wish to learn more about these studies.

What will our data be used for next?

Developing Standards for Improved Data Quality and for Selecting Fit for Use Biodiversity Data

Chapman, A. Belbin, L. Zermoglio, P. Wieczorek, J. Morris, P. Nicholls, M. R. Rees, E. K. Veiga, A. Tompson, A. M. Saraiva, A. A. James, S. Gendreau, C. Benson, A. Schigel, D. (2020) Biodiversity Information Science and Standards

The quality of biodiversity data publicly accessible via aggregators such as GBIF (Global Biodiversity Information Facility), the ALA (Atlas of Living Australia), iDigBio (Integrated Digitized Biocollections), and OBIS (Ocean Biogeographic Information System) is often questioned, especially by the research community. The Data Quality Interest Group, established by Biodiversity Information Standards (TDWG) and GBIF, has been engaged in four main activities: developing a framework for the assessment and management of data quality using a fitness for use approach; defining a core set of standardised tests and associated assertions based on Darwin Core terms; gathering and classifying user stories to form contextual-themed use cases, such as species distribution modelling, agrobiodiversity, and invasive species; and developing a standardised format for building and managing controlled vocabularies of values. Using the developed framework, data quality profiles have been built from use cases to represent user needs. Quality assertions can then be used to filter data suitable for a purpose. The assertions can also be used to provide feedback to data providers and custodians to assist in improving data quality at the source. A case study, using two different implementations of tests and assertions based around the Darwin Core "Event Date" terms, were also tested against GBIF data, to demonstrate that the tests are implementation agnostic, can be run on large aggregated datasets, and can make biodiversity data more fit for typical research uses.

Transitions between biomes are common and directional in Bombacoideae (Malvaceae)

Zizka, A. Carvalho‐Sobrinho, J.G. Pennington, R.T. Queiroz, L.P. Alcantara, S. Baum, D.A. Bacon, C.D. Antonelli, A. (2020) Journal of Biogeography

Aim: To quantify evolutionary transitions between tropical evergreen rain forest and seasonally dry biomes, to test whether biome transitions affect lineage diversification and to examine the robustness of these results to methodological choices. Location: The tropics. Time period: The Cenozoic. Major taxa studied: The plant subfamily Bombacoideae (Malvaceae). Methods: We inferred ancestral biomes based on a fossil‐dated molecular phylogeny of 103 species (59% of the clade) and recorded the number of transitions among biomes using biogeographical stochastic mapping based on the dispersal‐extinction‐cladogenesis model. We then estimated diversification rates using state‐specific speciation and extinction rate (SSE) methods. Furthermore, we tested the sensitivity of the results to model choice, phylogenetic uncertainty, measurement error and biome definition. Results: We found numerous transitions from evergreen rain forest to seasonally dry biomes, and fewer in the opposite direction. These results were robust to methodological choices. Biome type did not influence diversification rates, although this result was subject to uncertainty, especially related to model choice and biome definition. Main conclusions: Our results contradict the idea of evolutionary biome conservatism in Bombacoideae, and support previous findings that evergreen rain forests serve as a source for the flora of seasonally dry biomes. The impact of biome classification and biome definition on the results suggest caution when using a biome concept for biogeographical reconstruction and diversification rate analysis.